Nuprl Definition : real-vec-indep

real-vec-indep(k;L) ==  ∀a:ℕ||L|| ⟶ ℝ(req-vec(k;Σ{a i*L[i] 0≤i≤||L|| 1};λi.r0)  (∀i:ℕ||L||. ((a i) r0)))



Definitions occuring in Statement :  real-vec-sum: Σ{x[k] n≤k≤m} real-vec-mul: a*X req-vec: req-vec(n;x;y) req: y int-to-real: r(n) real: select: L[n] length: ||as|| int_seg: {i..j-} all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m natural_number: $n
Definitions occuring in definition :  function: x:A ⟶ B[x] real: implies:  Q req-vec: req-vec(n;x;y) real-vec-sum: Σ{x[k] n≤k≤m} subtract: m real-vec-mul: a*X select: L[n] lambda: λx.A[x] all: x:A. B[x] int_seg: {i..j-} length: ||as|| req: y apply: a int-to-real: r(n) natural_number: $n
FDL editor aliases :  real-vec-indep

Latex:
real-vec-indep(k;L)  ==
    \mforall{}a:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbR{}.  (req-vec(k;\mSigma{}\{a  i*L[i]  |  0\mleq{}i\mleq{}||L||  -  1\};\mlambda{}i.r0)  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}||L||.  ((a  i)  =  r0)))



Date html generated: 2019_10_30-AM-08_03_37
Last ObjectModification: 2019_09_17-PM-05_50_23

Theory : reals


Home Index