Nuprl Lemma : real-vec-mul_wf

[n:ℕ]. ∀[X:ℝ^n]. ∀[a:ℝ].  (a*X ∈ ℝ^n)


Proof




Definitions occuring in Statement :  real-vec-mul: a*X real-vec: ^n real: nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  real-vec: ^n uall: [x:A]. B[x] member: t ∈ T real-vec-mul: a*X nat:
Lemmas referenced :  rmul_wf int_seg_wf real_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[X:\mBbbR{}\^{}n].  \mforall{}[a:\mBbbR{}].    (a*X  \mmember{}  \mBbbR{}\^{}n)



Date html generated: 2016_05_18-AM-09_46_40
Last ObjectModification: 2015_12_27-PM-11_14_06

Theory : reals


Home Index