Nuprl Lemma : regular-iff

x:ℕ+ ⟶ ℤ
  (regular-seq(x)
  ⇐⇒ ∀n,m:ℕ+.
        ∃z:ℝ
         ((((r((x n) 2)/r(2 n)) ≤ z) ∧ (z ≤ (r((x n) 2)/r(2 n))))
         ∧ ((r((x m) 2)/r(2 m)) ≤ z)
         ∧ (z ≤ (r((x m) 2)/r(2 m)))))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y int-to-real: r(n) real: regular-int-seq: k-regular-seq(f) nat_plus: + all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] multiply: m subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q uall: [x:A]. B[x] prop: iff: ⇐⇒ Q
Lemmas referenced :  regular-int-seq-iff less_than_wf mul-one nat_plus_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality hypothesisEquality baseClosed hypothesis isectElimination lambdaFormation productElimination functionEquality intEquality

Latex:
\mforall{}x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}
    (regular-seq(x)
    \mLeftarrow{}{}\mRightarrow{}  \mforall{}n,m:\mBbbN{}\msupplus{}.
                \mexists{}z:\mBbbR{}
                  ((((r((x  n)  -  2)/r(2  *  n))  \mleq{}  z)  \mwedge{}  (z  \mleq{}  (r((x  n)  +  2)/r(2  *  n))))
                  \mwedge{}  ((r((x  m)  -  2)/r(2  *  m))  \mleq{}  z)
                  \mwedge{}  (z  \mleq{}  (r((x  m)  +  2)/r(2  *  m)))))



Date html generated: 2017_10_03-AM-08_45_05
Last ObjectModification: 2017_09_11-PM-01_36_29

Theory : reals


Home Index