Nuprl Lemma : regularize-real

k:ℕ+. ∀x:ℝ.  (regularize(k;x) x ∈ ℝ)


Proof




Definitions occuring in Statement :  regularize: regularize(k;f) real: nat_plus: + all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] real: member: t ∈ T uall: [x:A]. B[x] prop: nat_plus: +
Lemmas referenced :  regular-int-seq_wf real_wf nat_plus_wf regularize-regular real-regular
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut equalitySymmetry sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality hypothesis introduction extract_by_obid isectElimination natural_numberEquality hypothesisEquality dependent_functionElimination functionExtensionality applyEquality

Latex:
\mforall{}k:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbR{}.    (regularize(k;x)  =  x)



Date html generated: 2017_10_03-AM-09_09_01
Last ObjectModification: 2017_09_20-PM-06_22_43

Theory : reals


Home Index