Nuprl Lemma : regularize-real
∀k:ℕ+. ∀x:ℝ.  (regularize(k;x) = x ∈ ℝ)
Proof
Definitions occuring in Statement : 
regularize: regularize(k;f)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
real: ℝ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
nat_plus: ℕ+
Lemmas referenced : 
regular-int-seq_wf, 
real_wf, 
nat_plus_wf, 
regularize-regular, 
real-regular
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
equalitySymmetry, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
dependent_functionElimination, 
functionExtensionality, 
applyEquality
Latex:
\mforall{}k:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbR{}.    (regularize(k;x)  =  x)
Date html generated:
2017_10_03-AM-09_09_01
Last ObjectModification:
2017_09_20-PM-06_22_43
Theory : reals
Home
Index