Nuprl Definition : req_rat_term

r ≡ p/q ==
  ∀f:ℤ ⟶ ℝ
    let P,x rat_term_to_real(f;r) 
    in  (real_term_value(f;q) ≠ r0 ∧ (x (real_term_value(f;p)/real_term_value(f;q))))



Definitions occuring in Statement :  rat_term_to_real: rat_term_to_real(f;t) rdiv: (x/y) rneq: x ≠ y real_term_value: real_term_value(f;t) req: y int-to-real: r(n) real: all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] spread: spread def natural_number: $n int:
Definitions occuring in definition :  all: x:A. B[x] function: x:A ⟶ B[x] int: real: spread: spread def rat_term_to_real: rat_term_to_real(f;t) implies:  Q and: P ∧ Q rneq: x ≠ y int-to-real: r(n) natural_number: $n req: y rdiv: (x/y) real_term_value: real_term_value(f;t)
FDL editor aliases :  req_rat_term

Latex:
r  \mequiv{}  p/q  ==
    \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}
        let  P,x  =  rat\_term\_to\_real(f;r) 
        in  P  {}\mRightarrow{}  (real\_term\_value(f;q)  \mneq{}  r0  \mwedge{}  (x  =  (real\_term\_value(f;p)/real\_term\_value(f;q))))



Date html generated: 2019_10_29-AM-09_40_41
Last ObjectModification: 2019_04_01-AM-10_49_27

Theory : reals


Home Index