Nuprl Lemma : rinv_wf2

[x:ℝ]. (x ≠ r0  (rinv(x) ∈ ℝ))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rinv: rinv(x) int-to-real: r(n) real: uall: [x:A]. B[x] implies:  Q member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop:
Lemmas referenced :  rinv_wf rnonzero-iff rneq_wf int-to-real_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination dependent_functionElimination productElimination hypothesis natural_numberEquality sqequalRule lambdaEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:\mBbbR{}].  (x  \mneq{}  r0  {}\mRightarrow{}  (rinv(x)  \mmember{}  \mBbbR{}))



Date html generated: 2016_05_18-AM-07_10_56
Last ObjectModification: 2015_12_28-AM-00_39_22

Theory : reals


Home Index