Nuprl Lemma : rless-cases-sq
∀x:ℝ. ∀y:{y:ℝ| x < y} . ∀z:ℝ.  ((x < z) ∨ (z < y))
Proof
Definitions occuring in Statement : 
rless: x < y
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
rless-cases, 
rlessw_wf, 
rless_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
independent_functionElimination, 
inhabitedIsType, 
setIsType, 
universeIsType, 
isectElimination
Latex:
\mforall{}x:\mBbbR{}.  \mforall{}y:\{y:\mBbbR{}|  x  <  y\}  .  \mforall{}z:\mBbbR{}.    ((x  <  z)  \mvee{}  (z  <  y))
Date html generated:
2019_10_29-AM-10_04_36
Last ObjectModification:
2019_10_02-PM-06_34_31
Theory : reals
Home
Index