Nuprl Lemma : rless-cases-sq

x:ℝ. ∀y:{y:ℝx < y} . ∀z:ℝ.  ((x < z) ∨ (z < y))


Proof




Definitions occuring in Statement :  rless: x < y real: all: x:A. B[x] or: P ∨ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] prop:
Lemmas referenced :  rless-cases rlessw_wf rless_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename hypothesis independent_functionElimination inhabitedIsType setIsType universeIsType isectElimination

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}y:\{y:\mBbbR{}|  x  <  y\}  .  \mforall{}z:\mBbbR{}.    ((x  <  z)  \mvee{}  (z  <  y))



Date html generated: 2019_10_29-AM-10_04_36
Last ObjectModification: 2019_10_02-PM-06_34_31

Theory : reals


Home Index