Nuprl Lemma : rless-iff2
∀x,y:ℝ.  (x < y 
⇐⇒ ∃n:ℕ+. (x n) + 4 < y n)
Proof
Definitions occuring in Statement : 
rless: x < y
, 
real: ℝ
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
real: ℝ
, 
so_apply: x[s]
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
rless_wf, 
exists_wf, 
nat_plus_wf, 
less_than_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
addEquality, 
applyEquality, 
setElimination, 
rename, 
natural_numberEquality, 
dependent_pairFormation, 
productElimination, 
dependent_set_memberFormation
Latex:
\mforall{}x,y:\mBbbR{}.    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  (x  n)  +  4  <  y  n)
Date html generated:
2016_05_18-AM-07_04_07
Last ObjectModification:
2015_12_28-AM-00_35_11
Theory : reals
Home
Index