Nuprl Lemma : rless-iff2

x,y:ℝ.  (x < ⇐⇒ ∃n:ℕ+(x n) 4 < n)


Proof




Definitions occuring in Statement :  rless: x < y real: nat_plus: + less_than: a < b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q so_lambda: λ2x.t[x] real: so_apply: x[s] rless: x < y sq_exists: x:{A| B[x]} exists: x:A. B[x]
Lemmas referenced :  rless_wf exists_wf nat_plus_wf less_than_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality addEquality applyEquality setElimination rename natural_numberEquality dependent_pairFormation productElimination dependent_set_memberFormation

Latex:
\mforall{}x,y:\mBbbR{}.    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  (x  n)  +  4  <  y  n)



Date html generated: 2016_05_18-AM-07_04_07
Last ObjectModification: 2015_12_28-AM-00_35_11

Theory : reals


Home Index