Nuprl Lemma : rless-iff2
∀x,y:ℝ.  (x < y ⇐⇒ ∃n:ℕ+. (x n) + 4 < y n)
Proof
Definitions occuring in Statement : 
rless: x < y, 
real: ℝ, 
nat_plus: ℕ+, 
less_than: a < b, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
apply: f a, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
real: ℝ, 
so_apply: x[s], 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
exists: ∃x:A. B[x]
Lemmas referenced : 
rless_wf, 
exists_wf, 
nat_plus_wf, 
less_than_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
addEquality, 
applyEquality, 
setElimination, 
rename, 
natural_numberEquality, 
dependent_pairFormation, 
productElimination, 
dependent_set_memberFormation
Latex:
\mforall{}x,y:\mBbbR{}.    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  (x  n)  +  4  <  y  n)
Date html generated:
2016_05_18-AM-07_04_07
Last ObjectModification:
2015_12_28-AM-00_35_11
Theory : reals
Home
Index