Nuprl Lemma : rless-implies-rleq
∀x,y:ℝ. ((x < y)
⇒ (∃m:ℕ+. (x ≤ (y - (r1/r(m))))))
Proof
Definitions occuring in Statement :
rdiv: (x/y)
,
rleq: x ≤ y
,
rless: x < y
,
rsub: x - y
,
int-to-real: r(n)
,
real: ℝ
,
nat_plus: ℕ+
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
Lemmas referenced :
rless-iff-rleq,
real_wf
Rules used in proof :
cut,
lemma_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
hypothesis,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
productElimination
Latex:
\mforall{}x,y:\mBbbR{}. ((x < y) {}\mRightarrow{} (\mexists{}m:\mBbbN{}\msupplus{}. (x \mleq{} (y - (r1/r(m))))))
Date html generated:
2016_05_18-AM-07_53_38
Last ObjectModification:
2015_12_28-AM-01_07_12
Theory : reals
Home
Index