Nuprl Lemma : rless-implies-rleq
∀x,y:ℝ.  ((x < y) ⇒ (∃m:ℕ+. (x ≤ (y - (r1/r(m))))))
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rleq: x ≤ y, 
rless: x < y, 
rsub: x - y, 
int-to-real: r(n), 
real: ℝ, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q
Lemmas referenced : 
rless-iff-rleq, 
real_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination
Latex:
\mforall{}x,y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  (\mexists{}m:\mBbbN{}\msupplus{}.  (x  \mleq{}  (y  -  (r1/r(m))))))
Date html generated:
2016_05_18-AM-07_53_38
Last ObjectModification:
2015_12_28-AM-01_07_12
Theory : reals
Home
Index