Nuprl Lemma : rn-metric-msep

n:ℕ. ∀x,y:ℝ^n.  (x ⇐⇒ x ≠ y)


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b rn-metric: rn-metric(n) real-vec: ^n msep: y nat: all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] msep: y iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: real-vec: ^n prop: rev_implies:  Q

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}\^{}n.    (x  \#  y  \mLeftarrow{}{}\mRightarrow{}  x  \mneq{}  y)



Date html generated: 2020_05_20-PM-00_45_26
Last ObjectModification: 2019_11_11-PM-04_00_11

Theory : reals


Home Index