Nuprl Lemma : rnexp_functionality_wrt_rleq

x,y:ℝ.  ((r0 ≤ x)  (x ≤ y)  (∀n:ℕ(x^n ≤ y^n)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rnexp: x^k1 int-to-real: r(n) real: nat: all: x:A. B[x] implies:  Q natural_number: $n
Lemmas referenced :  rnexp-rleq
Rules used in proof :  cut introduction extract_by_obid hypothesis

Latex:
\mforall{}x,y:\mBbbR{}.    ((r0  \mleq{}  x)  {}\mRightarrow{}  (x  \mleq{}  y)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (x\^{}n  \mleq{}  y\^{}n)))



Date html generated: 2016_10_26-AM-09_08_44
Last ObjectModification: 2016_10_13-PM-06_43_08

Theory : reals


Home Index