Nuprl Lemma : rnonneg_wf

[x:ℕ+ ⟶ ℤ]. (rnonneg(x) ∈ ℙ)


Proof




Definitions occuring in Statement :  rnonneg: rnonneg(x) nat_plus: + uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rnonneg: rnonneg(x) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf nat_plus_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality minusEquality natural_numberEquality applyEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality intEquality

Latex:
\mforall{}[x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  (rnonneg(x)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-07_01_20
Last ObjectModification: 2015_12_28-AM-00_33_40

Theory : reals


Home Index