Nuprl Lemma : rpositive-rmax

x,y:ℝ.  (rpositive(rmax(x;y)) ⇐⇒ rpositive(x) ∨ rpositive(y))


Proof




Definitions occuring in Statement :  rpositive: rpositive(x) rmax: rmax(x;y) real: all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B real: rev_implies:  Q rpositive: rpositive(x) sq_exists: x:{A| B[x]} rmax: rmax(x;y) or: P ∨ Q guard: {T}
Lemmas referenced :  rpositive_wf rmax_wf real_wf or_wf imax_strict_ub less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule dependent_functionElimination natural_numberEquality productElimination independent_functionElimination unionElimination inlFormation dependent_set_memberFormation inrFormation introduction dependent_set_memberEquality because_Cache

Latex:
\mforall{}x,y:\mBbbR{}.    (rpositive(rmax(x;y))  \mLeftarrow{}{}\mRightarrow{}  rpositive(x)  \mvee{}  rpositive(y))



Date html generated: 2016_05_18-AM-07_01_02
Last ObjectModification: 2015_12_28-AM-00_33_34

Theory : reals


Home Index