Nuprl Lemma : rpositive-rmax
∀x,y:ℝ.  (rpositive(rmax(x;y)) 
⇐⇒ rpositive(x) ∨ rpositive(y))
Proof
Definitions occuring in Statement : 
rpositive: rpositive(x)
, 
rmax: rmax(x;y)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
rev_implies: P 
⇐ Q
, 
rpositive: rpositive(x)
, 
sq_exists: ∃x:{A| B[x]}
, 
rmax: rmax(x;y)
, 
or: P ∨ Q
, 
guard: {T}
Lemmas referenced : 
rpositive_wf, 
rmax_wf, 
real_wf, 
or_wf, 
imax_strict_ub, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
dependent_functionElimination, 
natural_numberEquality, 
productElimination, 
independent_functionElimination, 
unionElimination, 
inlFormation, 
dependent_set_memberFormation, 
inrFormation, 
introduction, 
dependent_set_memberEquality, 
because_Cache
Latex:
\mforall{}x,y:\mBbbR{}.    (rpositive(rmax(x;y))  \mLeftarrow{}{}\mRightarrow{}  rpositive(x)  \mvee{}  rpositive(y))
Date html generated:
2016_05_18-AM-07_01_02
Last ObjectModification:
2015_12_28-AM-00_33_34
Theory : reals
Home
Index