Nuprl Lemma : rseteq_wf

[A,B:Set(ℝ)].  (rseteq(A;B) ∈ ℙ)


Proof




Definitions occuring in Statement :  rseteq: rseteq(A;B) rset: Set(ℝ) uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  rseteq: rseteq(A;B) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf real_wf iff_wf rset-member_wf rset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[A,B:Set(\mBbbR{})].    (rseteq(A;B)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-08_07_49
Last ObjectModification: 2015_12_28-AM-01_14_10

Theory : reals


Home Index