Nuprl Lemma : rv-T_wf

[n:ℕ]. ∀[a,b,c:ℝ^n].  (rv-T(n;a;b;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  rv-T: rv-T(n;a;b;c) real-vec: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rv-T: rv-T(n;a;b;c) prop: and: P ∧ Q implies:  Q
Lemmas referenced :  real-vec-sep_wf real-vec-be_wf not_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].    (rv-T(n;a;b;c)  \mmember{}  \mBbbP{})



Date html generated: 2016_10_26-AM-10_45_36
Last ObjectModification: 2016_10_05-PM-00_04_27

Theory : reals


Home Index