Nuprl Lemma : rv-T_wf
∀[n:ℕ]. ∀[a,b,c:ℝ^n].  (rv-T(n;a;b;c) ∈ ℙ)
Proof
Definitions occuring in Statement : 
rv-T: rv-T(n;a;b;c)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rv-T: rv-T(n;a;b;c)
, 
prop: ℙ
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
real-vec-sep_wf, 
real-vec-be_wf, 
not_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].    (rv-T(n;a;b;c)  \mmember{}  \mBbbP{})
Date html generated:
2016_10_26-AM-10_45_36
Last ObjectModification:
2016_10_05-PM-00_04_27
Theory : reals
Home
Index