Nuprl Definition : seq-min-upper
seq-min-upper(k;n;f) ==
  primrec(n;1;λi,r. if ((i + 1) * (f r)) + ((2 * k) * (i + 1)) ≤z (r * (f (i + 1))) + ((2 * k) * r)
                   then r
                   else i + 1
                   fi )
Definitions occuring in Statement : 
le_int: i ≤z j
, 
primrec: primrec(n;b;c)
, 
ifthenelse: if b then t else f fi 
, 
apply: f a
, 
lambda: λx.A[x]
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
Definitions occuring in definition : 
natural_number: $n
, 
add: n + m
, 
multiply: n * m
, 
apply: f a
, 
le_int: i ≤z j
, 
ifthenelse: if b then t else f fi 
, 
lambda: λx.A[x]
, 
primrec: primrec(n;b;c)
FDL editor aliases : 
seq-min-upper
Latex:
seq-min-upper(k;n;f)  ==
    primrec(n;1;\mlambda{}i,r.  if  ((i  +  1)  *  (f  r))  +  ((2  *  k)  *  (i  +  1))  \mleq{}z  (r  *  (f  (i  +  1)))  +  ((2  *  k)  *  r)
                                      then  r
                                      else  i  +  1
                                      fi  )
Date html generated:
2017_10_03-AM-08_43_14
Last ObjectModification:
2017_09_09-AM-08_10_20
Theory : reals
Home
Index