Nuprl Definition : sine-approx
sine-approx(x;k;N) ==
eval u = poly-approx(λi.(r(if (i rem 2 =z 0) then 1 else -1 fi ))/((2 * i) + 1)!;x^2;k;2 * N) in
eval b = |u| + 1 in
eval z = x b in
(u * z) ÷ 4 * b
Definitions occuring in Statement :
poly-approx: poly-approx(a;x;k;N)
,
rnexp: x^k1
,
int-rdiv: (a)/k1
,
int-to-real: r(n)
,
fact: (n)!
,
absval: |i|
,
callbyvalue: callbyvalue,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
apply: f a
,
lambda: λx.A[x]
,
remainder: n rem m
,
divide: n ÷ m
,
multiply: n * m
,
add: n + m
,
minus: -n
,
natural_number: $n
Definitions occuring in definition :
poly-approx: poly-approx(a;x;k;N)
,
lambda: λx.A[x]
,
int-rdiv: (a)/k1
,
int-to-real: r(n)
,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
remainder: n rem m
,
minus: -n
,
fact: (n)!
,
rnexp: x^k1
,
add: n + m
,
absval: |i|
,
callbyvalue: callbyvalue,
apply: f a
,
divide: n ÷ m
,
multiply: n * m
,
natural_number: $n
FDL editor aliases :
sine-approx
Latex:
sine-approx(x;k;N) ==
eval u = poly-approx(\mlambda{}i.(r(if (i rem 2 =\msubz{} 0) then 1 else -1 fi ))/((2 * i) + 1)!;x\^{}2;k;2 * N) in
eval b = |u| + 1 in
eval z = x b in
(u * z) \mdiv{} 4 * b
Date html generated:
2019_10_29-AM-10_31_00
Last ObjectModification:
2019_01_30-PM-01_29_42
Theory : reals
Home
Index