Nuprl Lemma : sq_stable__meq
∀[X:Type]. ∀[d:metric(X)]. ∀[x,y:X].  SqStable(x ≡ y)
Proof
Definitions occuring in Statement : 
meq: x ≡ y
, 
metric: metric(X)
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
meq: x ≡ y
, 
metric: metric(X)
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
Lemmas referenced : 
sq_stable__req, 
int-to-real_wf, 
req_witness, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,y:X].    SqStable(x  \mequiv{}  y)
Date html generated:
2019_10_29-AM-10_54_34
Last ObjectModification:
2019_10_02-AM-09_36_03
Theory : reals
Home
Index