Nuprl Lemma : sq_stable__meq

[X:Type]. ∀[d:metric(X)]. ∀[x,y:X].  SqStable(x ≡ y)


Proof




Definitions occuring in Statement :  meq: x ≡ y metric: metric(X) sq_stable: SqStable(P) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T meq: x ≡ y metric: metric(X) sq_stable: SqStable(P) implies:  Q
Lemmas referenced :  sq_stable__req int-to-real_wf req_witness metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality sqequalRule lambdaEquality_alt dependent_functionElimination independent_functionElimination functionIsTypeImplies inhabitedIsType isect_memberEquality_alt because_Cache isectIsTypeImplies universeIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,y:X].    SqStable(x  \mequiv{}  y)



Date html generated: 2019_10_29-AM-10_54_34
Last ObjectModification: 2019_10_02-AM-09_36_03

Theory : reals


Home Index