Nuprl Lemma : subinterval_wf
∀[I,J:Interval].  (I ⊆ J  ∈ ℙ)
Proof
Definitions occuring in Statement : 
subinterval: I ⊆ J 
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
subinterval: I ⊆ J 
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
real_wf, 
i-member_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
functionEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[I,J:Interval].    (I  \msubseteq{}  J    \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-08_49_21
Last ObjectModification:
2015_12_27-PM-11_44_11
Theory : reals
Home
Index