Nuprl Lemma : subinterval_wf

[I,J:Interval].  (I ⊆ J  ∈ ℙ)


Proof




Definitions occuring in Statement :  subinterval: I ⊆  interval: Interval uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  subinterval: I ⊆  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  all_wf real_wf i-member_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality functionEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[I,J:Interval].    (I  \msubseteq{}  J    \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-08_49_21
Last ObjectModification: 2015_12_27-PM-11_44_11

Theory : reals


Home Index