Nuprl Lemma : weak-continuity-principle-real-ext
∀x:ℝ. ∀F:ℝ ⟶ 𝔹. ∀G:n:ℕ+ ⟶ {y:ℝ| x = y ∈ (ℕ+n ⟶ ℤ)} .  (∃n:ℕ+ [F x = F (G n)])
Proof
Definitions occuring in Statement : 
real: ℝ
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
weak-continuity-principle-real, 
WCPR: WCPR(F;x;G)
Lemmas referenced : 
weak-continuity-principle-real
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}x:\mBbbR{}.  \mforall{}F:\mBbbR{}  {}\mrightarrow{}  \mBbbB{}.  \mforall{}G:n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{y:\mBbbR{}|  x  =  y\}  .    (\mexists{}n:\mBbbN{}\msupplus{}  [F  x  =  F  (G  n)])
Date html generated:
2018_05_22-PM-02_16_17
Last ObjectModification:
2018_05_20-PM-02_46_27
Theory : reals
Home
Index