Nuprl Lemma : weak-continuity-principle-real-ext

x:ℝ. ∀F:ℝ ⟶ 𝔹. ∀G:n:ℕ+ ⟶ {y:ℝy ∈ (ℕ+n ⟶ ℤ)} .  (∃n:ℕ+ [F (G n)])


Proof




Definitions occuring in Statement :  real: int_seg: {i..j-} nat_plus: + bool: 𝔹 all: x:A. B[x] sq_exists: x:A [B[x]] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T weak-continuity-principle-real WCPR: WCPR(F;x;G)
Lemmas referenced :  weak-continuity-principle-real
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}F:\mBbbR{}  {}\mrightarrow{}  \mBbbB{}.  \mforall{}G:n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{y:\mBbbR{}|  x  =  y\}  .    (\mexists{}n:\mBbbN{}\msupplus{}  [F  x  =  F  (G  n)])



Date html generated: 2018_05_22-PM-02_16_17
Last ObjectModification: 2018_05_20-PM-02_46_27

Theory : reals


Home Index