Nuprl Lemma : real*-ap_wf
∀[x:ℝ*]. ∀[n:ℕ]. (x(n) ∈ ℝ)
Proof
Definitions occuring in Statement :
real*-ap: x(n)
,
real*: ℝ*
,
real: ℝ
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
real*-ap: x(n)
,
real*: ℝ*
Lemmas referenced :
nat_wf,
real*_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
applyEquality,
sqequalHypSubstitution,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
extract_by_obid,
isect_memberEquality,
isectElimination,
thin,
because_Cache
Latex:
\mforall{}[x:\mBbbR{}*]. \mforall{}[n:\mBbbN{}]. (x(n) \mmember{} \mBbbR{})
Date html generated:
2018_05_22-PM-03_13_44
Last ObjectModification:
2017_10_06-PM-03_21_51
Theory : reals_2
Home
Index