Nuprl Lemma : sp-le_wf
∀[x,y:Sierpinski].  (x ≤ y ∈ ℙ)
Proof
Definitions occuring in Statement : 
sp-le: x ≤ y, 
Sierpinski: Sierpinski, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
sp-le: x ≤ y, 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B
Lemmas referenced : 
equal_wf, 
Sierpinski_wf, 
Sierpinski-top_wf, 
subtype-Sierpinski
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[x,y:Sierpinski].    (x  \mleq{}  y  \mmember{}  \mBbbP{})
 Date html generated: 
2019_10_31-AM-06_36_04
 Last ObjectModification: 
2015_12_28-AM-11_21_15
Theory : synthetic!topology
Home
Index