Nuprl Lemma : two-class-equiv-rel
∀[T:Type]. ∀[t:T].  EquivRel(T;x,y.x = t ∈ T ⇐⇒ y = t ∈ T)
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
and: P ∧ Q, 
refl: Refl(T;x,y.E[x; y]), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
trans: Trans(T;x,y.E[x; y]), 
sym: Sym(T;x,y.E[x; y]), 
cand: A c∧ B
Lemmas referenced : 
equal_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[t:T].    EquivRel(T;x,y.x  =  t  \mLeftarrow{}{}\mRightarrow{}  y  =  t)
Date html generated:
2019_10_31-AM-06_35_22
Last ObjectModification:
2017_07_28-AM-09_11_55
Theory : synthetic!topology
Home
Index