Nuprl Lemma : MMTreeco_wf
∀[T:Type]. (MMTreeco(T) ∈ Type)
Proof
Definitions occuring in Statement :
MMTreeco: MMTreeco(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
MMTreeco: MMTreeco(T)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
corec_wf,
ifthenelse_wf,
eq_atom_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
lambdaEquality,
productEquality,
atomEquality,
instantiate,
hypothesisEquality,
tokenEquality,
hypothesis,
universeEquality,
voidEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[T:Type]. (MMTreeco(T) \mmember{} Type)
Date html generated:
2016_05_16-AM-08_54_16
Last ObjectModification:
2015_12_28-PM-06_53_37
Theory : C-semantics
Home
Index