Nuprl Lemma : RankEx4-definition
∀[A:Type]. ∀[R:A ⟶ RankEx4() ⟶ ℙ].
((∀foo:ℤ + RankEx4(). (case foo of inl(u) => True | inr(u1) => {x:A| R[x;u1]}
⇒ {x:A| R[x;RankEx4_Foo(foo)]} ))
⇒ {∀v:RankEx4(). {x:A| R[x;v]} })
Proof
Definitions occuring in Statement :
RankEx4_Foo: RankEx4_Foo(foo)
,
RankEx4: RankEx4()
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
guard: {T}
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
true: True
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
decide: case b of inl(x) => s[x] | inr(y) => t[y]
,
union: left + right
,
int: ℤ
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
guard: {T}
,
so_lambda: λ2x.t[x]
,
member: t ∈ T
,
so_apply: x[s1;s2]
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
prop: ℙ
Lemmas referenced :
RankEx4-induction,
set_wf,
RankEx4_wf,
all_wf,
true_wf,
RankEx4_Foo_wf
Rules used in proof :
cut,
lemma_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
sqequalRule,
lambdaEquality,
hypothesisEquality,
applyEquality,
because_Cache,
independent_functionElimination,
unionEquality,
intEquality,
functionEquality,
decideEquality,
universeEquality,
cumulativity
Latex:
\mforall{}[A:Type]. \mforall{}[R:A {}\mrightarrow{} RankEx4() {}\mrightarrow{} \mBbbP{}].
((\mforall{}foo:\mBbbZ{} + RankEx4()
(case foo of inl(u) => True | inr(u1) => \{x:A| R[x;u1]\} {}\mRightarrow{} \{x:A| R[x;RankEx4\_Foo(foo)]\} ))
{}\mRightarrow{} \{\mforall{}v:RankEx4(). \{x:A| R[x;v]\} \})
Date html generated:
2016_05_16-AM-09_04_41
Last ObjectModification:
2015_12_28-PM-06_50_43
Theory : C-semantics
Home
Index