Nuprl Lemma : divide-exact
∀[g:ℤ-o]. ∀[v:ℤ].  (((g * v) ÷ g) = v ∈ ℤ)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
int_nzero: ℤ-o
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
int_nzero_wf, 
istype-int, 
div-cancel-1, 
mul-commutes
Rules used in proof : 
universeIsType, 
inhabitedIsType, 
isectIsTypeImplies, 
axiomEquality, 
isect_memberEquality_alt, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[v:\mBbbZ{}].    (((g  *  v)  \mdiv{}  g)  =  v)
Date html generated:
2020_05_19-PM-09_35_37
Last ObjectModification:
2019_12_26-AM-11_45_14
Theory : arithmetic
Home
Index