Nuprl Lemma : divide-exact

[g:ℤ-o]. ∀[v:ℤ].  (((g v) ÷ g) v ∈ ℤ)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] divide: n ÷ m multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] int_nzero: -o member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  int_nzero_wf istype-int div-cancel-1 mul-commutes
Rules used in proof :  universeIsType inhabitedIsType isectIsTypeImplies axiomEquality isect_memberEquality_alt dependent_functionElimination Error :memTop,  hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[v:\mBbbZ{}].    (((g  *  v)  \mdiv{}  g)  =  v)



Date html generated: 2020_05_19-PM-09_35_37
Last ObjectModification: 2019_12_26-AM-11_45_14

Theory : arithmetic


Home Index