Nuprl Lemma : divrem_wf
∀[a:ℤ]. ∀[n:ℤ-o].  (divrem(a; n) ∈ ℤ × ℤ)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
divrem: divrem(n; m)
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
int_subtype_base, 
int_nzero_wf, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :divremEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
hypothesis, 
Error :lambdaFormation_alt, 
independent_functionElimination, 
voidElimination, 
Error :equalityIstype, 
Error :inhabitedIsType, 
applyEquality, 
introduction, 
extract_by_obid, 
sqequalRule, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
Error :universeIsType
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    (divrem(a;  n)  \mmember{}  \mBbbZ{}  \mtimes{}  \mBbbZ{})
Date html generated:
2019_06_20-AM-11_23_35
Last ObjectModification:
2019_03_27-PM-03_12_35
Theory : arithmetic
Home
Index