Nuprl Lemma : divrem_wf

[a:ℤ]. ∀[n:ℤ-o].  (divrem(a; n) ∈ ℤ × ℤ)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] divrem: divrem(n; m) int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q false: False subtype_rel: A ⊆B
Lemmas referenced :  int_subtype_base int_nzero_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :divremEquality,  hypothesisEquality sqequalHypSubstitution setElimination thin rename cut hypothesis Error :lambdaFormation_alt,  independent_functionElimination voidElimination Error :equalityIstype,  Error :inhabitedIsType,  applyEquality introduction extract_by_obid sqequalRule baseClosed sqequalBase equalitySymmetry Error :universeIsType

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    (divrem(a;  n)  \mmember{}  \mBbbZ{}  \mtimes{}  \mBbbZ{})



Date html generated: 2019_06_20-AM-11_23_35
Last ObjectModification: 2019_03_27-PM-03_12_35

Theory : arithmetic


Home Index