Nuprl Lemma : istype-le
∀[i,j:ℤ].  istype(i ≤ j)
Proof
Definitions occuring in Statement : 
istype: istype(T)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
le_wf, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType
Latex:
\mforall{}[i,j:\mBbbZ{}].    istype(i  \mleq{}  j)
Date html generated:
2019_06_20-AM-11_22_23
Last ObjectModification:
2018_10_02-PM-05_01_20
Theory : arithmetic
Home
Index