Nuprl Lemma : istype-nat
istype(ℕ)
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
istype: istype(T)
Definitions unfolded in proof : 
member: t ∈ T
Lemmas referenced : 
nat_wf
Rules used in proof : 
Error :universeIsType, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
istype(\mBbbN{})
Date html generated:
2019_06_20-AM-11_23_09
Last ObjectModification:
2018_09_29-PM-09_29_13
Theory : arithmetic
Home
Index