Nuprl Lemma : mul-distributes-right
∀[x:ℤ]. ∀[y,z:Top].  ((y + z) * x ~ (y * x) + (z * x))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
multiply: n * m
, 
add: n + m
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
top_wf, 
mul-distributes, 
mul-commutes
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
intEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[y,z:Top].    ((y  +  z)  *  x  \msim{}  (y  *  x)  +  (z  *  x))
Date html generated:
2016_05_13-PM-03_29_10
Last ObjectModification:
2015_12_26-AM-09_48_08
Theory : arithmetic
Home
Index