Nuprl Lemma : multiply_nat_wf

[i,j:ℕ].  (i j ∈ ℕ)


Proof




Definitions occuring in Statement :  nat: uall: [x:A]. B[x] member: t ∈ T multiply: m
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: prop:
Lemmas referenced :  mul_bounds_1a le_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality multiplyEquality setElimination rename hypothesis natural_numberEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[i,j:\mBbbN{}].    (i  *  j  \mmember{}  \mBbbN{})



Date html generated: 2016_05_13-PM-03_41_16
Last ObjectModification: 2015_12_26-AM-09_39_58

Theory : arithmetic


Home Index