Nuprl Lemma : sequence_wf
∀[T:Type]. (sequence(T) ∈ Type)
Proof
Definitions occuring in Statement : 
sequence: sequence(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sequence: sequence(T)
, 
nat: ℕ
Lemmas referenced : 
nat_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
hypothesis, 
functionEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (sequence(T)  \mmember{}  Type)
Date html generated:
2018_07_25-PM-01_28_09
Last ObjectModification:
2018_06_11-PM-01_10_07
Theory : arithmetic
Home
Index