Nuprl Lemma : almost-full_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (AFx,y:T.R[x;y] ∈ ℙ)


Proof




Definitions occuring in Statement :  almost-full: AFx,y:T.R[x; y] uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T almost-full: AFx,y:T.R[x; y] so_lambda: λ2x.t[x] nat: so_apply: x[s1;s2] so_apply: x[s] prop:
Lemmas referenced :  all_wf nat_wf squash_wf exists_wf and_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis hypothesisEquality lambdaEquality setElimination rename applyEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (AFx,y:T.R[x;y]  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_50_53
Last ObjectModification: 2015_12_26-AM-10_17_23

Theory : bar-induction


Home Index