Nuprl Definition : homogeneous

homogeneous(R;n;s) ==
  strictly-increasing-seq(n;s) ∧ (∀m,i,j:ℕn.  (m <  m <  (R (s m) (s i) ⇐⇒ (s m) (s j))))



Definitions occuring in Statement :  strictly-increasing-seq: strictly-increasing-seq(n;s) int_seg: {i..j-} less_than: a < b all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q apply: a natural_number: $n
Definitions occuring in definition :  and: P ∧ Q strictly-increasing-seq: strictly-increasing-seq(n;s) all: x:A. B[x] int_seg: {i..j-} natural_number: $n implies:  Q less_than: a < b iff: ⇐⇒ Q apply: a
FDL editor aliases :  homogeneous

Latex:
homogeneous(R;n;s)  ==
    strictly-increasing-seq(n;s)  \mwedge{}  (\mforall{}m,i,j:\mBbbN{}n.    (m  <  i  {}\mRightarrow{}  m  <  j  {}\mRightarrow{}  (R  (s  m)  (s  i)  \mLeftarrow{}{}\mRightarrow{}  R  (s  m)  (s  j))))



Date html generated: 2016_05_13-PM-03_50_03
Last ObjectModification: 2015_09_22-PM-05_45_20

Theory : bar-induction


Home Index