Nuprl Lemma : seq-adjoin_wf
∀[T:Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ T]. ∀[t:T].  (s++t ∈ ℕn + 1 ⟶ T)
Proof
Definitions occuring in Statement : 
seq-adjoin: s++t
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
seq-adjoin: s++t
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
seq-append_wf, 
false_wf, 
le_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
setElimination, 
rename, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[t:T].    (s++t  \mmember{}  \mBbbN{}n  +  1  {}\mrightarrow{}  T)
Date html generated:
2016_05_13-PM-03_49_16
Last ObjectModification:
2015_12_26-AM-10_17_53
Theory : bar-induction
Home
Index