Nuprl Lemma : seq-adjoin_wf

[T:Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ T]. ∀[t:T].  (s++t ∈ ℕ1 ⟶ T)


Proof




Definitions occuring in Statement :  seq-adjoin: s++t int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T seq-adjoin: s++t nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop:
Lemmas referenced :  seq-append_wf false_wf le_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality setElimination rename universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[t:T].    (s++t  \mmember{}  \mBbbN{}n  +  1  {}\mrightarrow{}  T)



Date html generated: 2016_05_13-PM-03_49_16
Last ObjectModification: 2015_12_26-AM-10_17_53

Theory : bar-induction


Home Index