Nuprl Lemma : tcWO_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (tcWO(T;x,y.R[x;y]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
tcWO: tcWO(T;x,y.>[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
tcWO: tcWO(T;x,y.>[x; y])
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
all_wf, 
nat_wf, 
squash_wf, 
exists_wf, 
less_than_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
because_Cache, 
functionEquality, 
applyEquality, 
hypothesis, 
universeEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (tcWO(T;x,y.R[x;y])  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_51_50
Last ObjectModification:
2015_12_26-AM-10_17_22
Theory : bar-induction
Home
Index