Nuprl Lemma : band_bor_absorption
∀[a,b:Top].  (a ∨b(a ∧b b) ~ a ∧b tt)
Proof
Definitions occuring in Statement : 
bor: p ∨bq, 
band: p ∧b q, 
btrue: tt, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bor: p ∨bq, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
band: p ∧b q, 
bfalse: ff, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
top: Top, 
has-value: (a)↓, 
prop: ℙ
Lemmas referenced : 
top_wf, 
equal_wf, 
has-value_wf_base, 
is-exception_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesisEquality, 
thin, 
because_Cache, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
extract_by_obid, 
hypothesis, 
sqequalSqle, 
divergentSqle, 
callbyvalueDecide, 
sqequalHypSubstitution, 
unionEquality, 
unionElimination, 
sqleReflexivity, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
decideExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalAxiom
Latex:
\mforall{}[a,b:Top].    (a  \mvee{}\msubb{}(a  \mwedge{}\msubb{}  b)  \msim{}  a  \mwedge{}\msubb{}  tt)
Date html generated:
2017_04_14-AM-07_29_49
Last ObjectModification:
2017_02_27-PM-02_58_28
Theory : bool_1
Home
Index