Nuprl Lemma : bnot_bnot_elim

[p:𝔹]. ¬b¬bp


Proof




Definitions occuring in Statement :  bnot: ¬bb bool: 𝔹 uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 bnot: ¬bb
Lemmas referenced :  btrue_wf bfalse_wf bool_wf
Rules used in proof :  lemma_by_obid hypothesis cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution equalityElimination thin unionElimination sqequalHypSubstitution sqequalRule introduction extract_by_obid

Latex:
\mforall{}[p:\mBbbB{}].  \mneg{}\msubb{}\mneg{}\msubb{}p  =  p



Date html generated: 2019_06_20-AM-11_31_04
Last ObjectModification: 2018_10_15-PM-00_44_51

Theory : bool_1


Home Index