Nuprl Lemma : bnot_bnot_elim
∀[p:𝔹]. ¬b¬bp = p
Proof
Definitions occuring in Statement : 
bnot: ¬bb
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
bnot: ¬bb
Lemmas referenced : 
btrue_wf, 
bfalse_wf, 
bool_wf
Rules used in proof : 
lemma_by_obid, 
hypothesis, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
equalityElimination, 
thin, 
unionElimination, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
extract_by_obid
Latex:
\mforall{}[p:\mBbbB{}].  \mneg{}\msubb{}\mneg{}\msubb{}p  =  p
Date html generated:
2019_06_20-AM-11_31_04
Last ObjectModification:
2018_10_15-PM-00_44_51
Theory : bool_1
Home
Index