Nuprl Lemma : isect_prod_lemma
∀[A,B,C:Type].  (A × B ⋂ A × C ⊆r (A × B ⋂ C))
Proof
Definitions occuring in Statement : 
isect2: T1 ⋂ T2, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
isect2: T1 ⋂ T2, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
prop: ℙ, 
pi2: snd(t), 
pi1: fst(t), 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
member: t ∈ T
Lemmas referenced : 
equal_wf, 
isect2_decomp, 
isect2_wf
Rules used in proof : 
independent_pairEquality, 
Error :lambdaFormation_alt, 
Error :equalityIstype, 
Error :isect_memberEquality_alt, 
unionElimination, 
equalityElimination, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
sqequalRule, 
lambdaFormation, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaEquality_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].    (A  \mtimes{}  B  \mcap{}  A  \mtimes{}  C  \msubseteq{}r  (A  \mtimes{}  B  \mcap{}  C))
Date html generated:
2019_06_20-PM-01_04_51
Last ObjectModification:
2019_06_20-PM-01_00_45
Theory : bool_1
Home
Index