Nuprl Lemma : has-value-implies-dec-isinr
∀t,a,b:Base. ((t)↓
⇒ ((t ~ inr outr(t) ) ∨ (if t is inr then a else b ~ b)))
Proof
Definitions occuring in Statement :
has-value: (a)↓
,
outr: outr(x)
,
isinr: isinr def,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
or: P ∨ Q
,
inr: inr x
,
base: Base
,
sqequal: s ~ t
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
has-value: (a)↓
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
outr: outr(x)
,
or: P ∨ Q
,
top: Top
,
guard: {T}
,
prop: ℙ
Lemmas referenced :
base_wf,
top_wf,
is-exception_wf,
has-value_wf_base
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
isinrCases,
divergentSqle,
hypothesis,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
baseClosed,
hypothesisEquality,
sqequalRule,
inlFormation,
sqequalIntensionalEquality,
isect_memberFormation,
introduction,
sqequalAxiom,
isect_memberEquality,
because_Cache,
voidElimination,
voidEquality,
inrFormation,
baseApply,
closedConclusion
Latex:
\mforall{}t,a,b:Base. ((t)\mdownarrow{} {}\mRightarrow{} ((t \msim{} inr outr(t) ) \mvee{} (if t is inr then a else b \msim{} b)))
Date html generated:
2016_05_13-PM-03_22_43
Last ObjectModification:
2016_01_14-PM-06_46_43
Theory : call!by!value_1
Home
Index