Nuprl Lemma : strict-strict1

F:Base. (strict(F)  strict1(λx.F[x]))


Proof




Definitions occuring in Statement :  strict1: strict1(F) strict: strict(F) so_apply: x[s] all: x:A. B[x] implies:  Q lambda: λx.A[x] base: Base
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q strict: strict(F) so_apply: x[s] strict1: strict1(F) and: P ∧ Q cand: c∧ B member: t ∈ T guard: {T} or: P ∨ Q prop: uall: [x:A]. B[x] squash: T
Lemmas referenced :  strict_wf base_wf is-exception_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution sqequalRule productElimination thin independent_pairFormation hypothesis cut dependent_functionElimination hypothesisEquality independent_functionElimination inrFormation lemma_by_obid isectElimination introduction imageMemberEquality baseClosed baseApply closedConclusion

Latex:
\mforall{}F:Base.  (strict(F)  {}\mRightarrow{}  strict1(\mlambda{}x.F[x]))



Date html generated: 2016_05_13-PM-03_23_51
Last ObjectModification: 2016_01_14-PM-06_45_41

Theory : call!by!value_1


Home Index