Nuprl Lemma : decidable__all_int_seg
∀i,j:ℤ.  ∀[F:{i..j-} ⟶ ℙ{u}]. ((∀k:{i..j-}. Dec(F[k])) ⇒ Dec(∀k:{i..j-}. F[k]))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
so_apply: x[s], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
exists: ∃x:A. B[x], 
not: ¬A, 
false: False, 
guard: {T}
Lemmas referenced : 
decidable__exists_int_seg, 
not_wf, 
int_seg_wf, 
decidable__not, 
all_wf, 
decidable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
lambdaEquality, 
instantiate, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
cumulativity, 
functionEquality, 
universeEquality, 
intEquality, 
unionElimination, 
inrFormation, 
inlFormation, 
because_Cache, 
productElimination, 
voidElimination, 
dependent_pairFormation
Latex:
\mforall{}i,j:\mBbbZ{}.    \mforall{}[F:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}\{u\}].  ((\mforall{}k:\{i..j\msupminus{}\}.  Dec(F[k]))  {}\mRightarrow{}  Dec(\mforall{}k:\{i..j\msupminus{}\}.  F[k]))
Date html generated:
2016_05_13-PM-03_47_49
Last ObjectModification:
2015_12_26-AM-09_57_55
Theory : call!by!value_2
Home
Index