Nuprl Lemma : minimal-double-negation-hyp-elim
∀[A,P,Q:ℙ].  ((P 
⇒ Q 
⇒ A) 
⇒ ((P 
⇒ A) 
⇒ A) 
⇒ Q 
⇒ A)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
hypothesisEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,P,Q:\mBbbP{}].    ((P  {}\mRightarrow{}  Q  {}\mRightarrow{}  A)  {}\mRightarrow{}  ((P  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)  {}\mRightarrow{}  Q  {}\mRightarrow{}  A)
Date html generated:
2016_05_13-PM-03_46_04
Last ObjectModification:
2015_12_26-AM-09_58_42
Theory : call!by!value_2
Home
Index