Nuprl Lemma : primrec1_lemma
∀c,b:Top.  (primrec(1;b;c) ~ c 0 b)
Proof
Definitions occuring in Statement : 
primrec: primrec(n;b;c), 
top: Top, 
all: ∀x:A. B[x], 
apply: f a, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
primrec: primrec(n;b;c), 
primtailrec: primtailrec(n;i;b;f), 
subtract: n - m, 
member: t ∈ T
Lemmas referenced : 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
sqequalRule, 
hypothesis, 
Error :inhabitedIsType, 
hypothesisEquality, 
introduction, 
extract_by_obid
Latex:
\mforall{}c,b:Top.    (primrec(1;b;c)  \msim{}  c  0  b)
Date html generated:
2019_06_20-AM-11_27_43
Last ObjectModification:
2019_01_28-PM-05_30_36
Theory : call!by!value_2
Home
Index