Nuprl Lemma : W-subtype-coW

[A:𝕌']. ∀[B:A ⟶ Type].  (W(A;a.B[a]) ⊆coW(A;a.B[a]))


Proof




Definitions occuring in Statement :  coW: coW(A;a.B[a]) W: W(A;a.B[a]) subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B W: W(A;a.B[a]) param-W: pW so_lambda: λ2x.t[x] so_apply: x[s] coW: coW(A;a.B[a])
Lemmas referenced :  W_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution setElimination thin rename hypothesis instantiate extract_by_obid isectElimination hypothesisEquality sqequalRule cumulativity applyEquality axiomEquality functionEquality universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (W(A;a.B[a])  \msubseteq{}r  coW(A;a.B[a]))



Date html generated: 2019_06_20-PM-00_56_01
Last ObjectModification: 2019_01_02-PM-01_32_37

Theory : co-recursion-2


Home Index