Nuprl Definition : coW-wfdd

coW-wfdd(a.B[a];w) ==
  ∀p:{p:n:ℕ ⟶ copath(a.B[a];w)| 
      ∀i:ℕ
        ((copath-length(p i) i ∈ ℤ)
         (copath-length(p (i 1)) (i 1) ∈ ℤ)
         copathAgree(a.B[a];w;p i;p (i 1)))} 
    (↓∃i:ℕ(copath-length(p i) i ∈ ℤ)))



Definitions occuring in Statement :  copathAgree: copathAgree(a.B[a];w;x;y) copath-length: copath-length(p) copath: copath(a.B[a];w) nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A squash: T implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions occuring in definition :  set: {x:A| B[x]}  function: x:A ⟶ B[x] copath: copath(a.B[a];w) all: x:A. B[x] implies:  Q copathAgree: copathAgree(a.B[a];w;x;y) add: m natural_number: $n squash: T exists: x:A. B[x] nat: not: ¬A equal: t ∈ T int: copath-length: copath-length(p) apply: a
FDL editor aliases :  coW-wfdd

Latex:
coW-wfdd(a.B[a];w)  ==
    \mforall{}p:\{p:n:\mBbbN{}  {}\mrightarrow{}  copath(a.B[a];w)| 
            \mforall{}i:\mBbbN{}
                ((copath-length(p  i)  =  i)
                {}\mRightarrow{}  (copath-length(p  (i  +  1))  =  (i  +  1))
                {}\mRightarrow{}  copathAgree(a.B[a];w;p  i;p  (i  +  1)))\} 
        (\mdownarrow{}\mexists{}i:\mBbbN{}.  (\mneg{}(copath-length(p  i)  =  i)))



Date html generated: 2019_06_20-PM-00_57_15
Last ObjectModification: 2019_01_02-PM-01_34_14

Theory : co-recursion-2


Home Index