Nuprl Definition : coWmem

coWmem(a.B[a];z;w) ==  ∃b:coW-dom(a.B[a];w). coW-equiv(a.B[a];z;coW-item(w;b))



Definitions occuring in Statement :  coW-equiv: coW-equiv(a.B[a];w;w') coW-item: coW-item(w;b) coW-dom: coW-dom(a.B[a];w) exists: x:A. B[x]
Definitions occuring in definition :  exists: x:A. B[x] coW-dom: coW-dom(a.B[a];w) coW-equiv: coW-equiv(a.B[a];w;w') coW-item: coW-item(w;b)
FDL editor aliases :  coWmem

Latex:
coWmem(a.B[a];z;w)  ==    \mexists{}b:coW-dom(a.B[a];w).  coW-equiv(a.B[a];z;coW-item(w;b))



Date html generated: 2019_06_20-PM-01_10_56
Last ObjectModification: 2019_01_02-PM-01_35_08

Theory : co-recursion-2


Home Index