Nuprl Lemma : very-dep-fun_wf
∀[A,B:Type]. ∀[C:A ⟶ B ⟶ Type].  (very-dep-fun(A;B;a,b.C[a;b]) ∈ Type)
Proof
Definitions occuring in Statement : 
very-dep-fun: very-dep-fun(A;B;a,b.C[a; b])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
very-dep-fun: very-dep-fun(A;B;a,b.C[a; b])
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
vdf_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
isectEquality, 
intEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality_alt, 
applyEquality, 
universeIsType, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].    (very-dep-fun(A;B;a,b.C[a;b])  \mmember{}  Type)
Date html generated:
2020_05_19-PM-09_40_22
Last ObjectModification:
2020_03_05-AM-11_15_14
Theory : co-recursion-2
Home
Index