Nuprl Lemma : very-dep-fun_wf

[A,B:Type]. ∀[C:A ⟶ B ⟶ Type].  (very-dep-fun(A;B;a,b.C[a;b]) ∈ Type)


Proof




Definitions occuring in Statement :  very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  vdf_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule isectEquality intEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality_alt applyEquality universeIsType hypothesis axiomEquality equalityTransitivity equalitySymmetry functionIsType inhabitedIsType isect_memberEquality_alt isectIsTypeImplies instantiate universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].    (very-dep-fun(A;B;a,b.C[a;b])  \mmember{}  Type)



Date html generated: 2020_05_19-PM-09_40_22
Last ObjectModification: 2020_03_05-AM-11_15_14

Theory : co-recursion-2


Home Index