Nuprl Lemma : copath-cons-hd-tl

[p:ℕ × Top × Top]. (copath-cons(copath-hd(p);copath-tl(p)) p)


Proof




Definitions occuring in Statement :  copath-cons: copath-cons(b;x) copath-tl: copath-tl(x) copath-hd: copath-hd(p) nat: uall: [x:A]. B[x] top: Top product: x:A × B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T copath-tl: copath-tl(x) copath-hd: copath-hd(p) copath-cons: copath-cons(b;x) pi2: snd(t) pi1: fst(t) nat:
Lemmas referenced :  subtract-add-cancel nat_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut productElimination thin sqequalRule extract_by_obid sqequalHypSubstitution isectElimination setElimination rename hypothesisEquality hypothesis natural_numberEquality sqequalAxiom productEquality

Latex:
\mforall{}[p:\mBbbN{}  \mtimes{}  Top  \mtimes{}  Top].  (copath-cons(copath-hd(p);copath-tl(p))  \msim{}  p)



Date html generated: 2018_07_25-PM-01_40_08
Last ObjectModification: 2018_06_14-AM-10_41_17

Theory : co-recursion


Home Index