Nuprl Lemma : isom-games_inversion
∀[g1,g2:SimpleGame].  (g1 ≅ g2 
⇒ g2 ≅ g1)
Proof
Definitions occuring in Statement : 
isom-games: g1 ≅ g2
, 
simple-game: SimpleGame
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
isom-games: g1 ≅ g2
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
simple-game_wf, 
isom-games_wf, 
exists_wf, 
sg-init_wf, 
equal_wf, 
sg-legal2_wf, 
sg-legal1_wf, 
sg-pos_wf, 
all_wf
Rules used in proof : 
applyEquality, 
functionEquality, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
extract_by_obid, 
introduction, 
productEquality, 
independent_pairFormation, 
hypothesis, 
cut, 
hypothesisEquality, 
dependent_pairFormation, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g1,g2:SimpleGame].    (g1  \mcong{}  g2  {}\mRightarrow{}  g2  \mcong{}  g1)
Date html generated:
2018_07_25-PM-01_34_08
Last ObjectModification:
2018_07_11-PM-00_26_43
Theory : co-recursion
Home
Index