Nuprl Lemma : isom-games_inversion

[g1,g2:SimpleGame].  (g1 ≅ g2  g2 ≅ g1)


Proof




Definitions occuring in Statement :  isom-games: g1 ≅ g2 simple-game: SimpleGame uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] prop: cand: c∧ B and: P ∧ Q member: t ∈ T exists: x:A. B[x] isom-games: g1 ≅ g2 implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  simple-game_wf isom-games_wf exists_wf sg-init_wf equal_wf sg-legal2_wf sg-legal1_wf sg-pos_wf all_wf
Rules used in proof :  applyEquality functionEquality lambdaEquality sqequalRule isectElimination extract_by_obid introduction productEquality independent_pairFormation hypothesis cut hypothesisEquality dependent_pairFormation thin productElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g1,g2:SimpleGame].    (g1  \mcong{}  g2  {}\mRightarrow{}  g2  \mcong{}  g1)



Date html generated: 2018_07_25-PM-01_34_08
Last ObjectModification: 2018_07_11-PM-00_26_43

Theory : co-recursion


Home Index